Description: Closed form of sneqr . (Contributed by Scott Fenton, 1-Apr-2011) (Proof shortened by JJ, 23-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sneqrg | |- ( A e. V -> ( { A } = { B } -> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | |- ( A e. V -> A e. { A } ) |
|
2 | eleq2 | |- ( { A } = { B } -> ( A e. { A } <-> A e. { B } ) ) |
|
3 | 1 2 | syl5ibcom | |- ( A e. V -> ( { A } = { B } -> A e. { B } ) ) |
4 | elsng | |- ( A e. V -> ( A e. { B } <-> A = B ) ) |
|
5 | 3 4 | sylibd | |- ( A e. V -> ( { A } = { B } -> A = B ) ) |