Metamath Proof Explorer


Theorem snex

Description: A singleton is a set. Theorem 7.12 of Quine p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT . (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 19-May-2013)

Ref Expression
Assertion snex
|- { A } e. _V

Proof

Step Hyp Ref Expression
1 snexg
 |-  ( A e. _V -> { A } e. _V )
2 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
3 2 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
4 0ex
 |-  (/) e. _V
5 3 4 eqeltrdi
 |-  ( -. A e. _V -> { A } e. _V )
6 1 5 pm2.61i
 |-  { A } e. _V