Metamath Proof Explorer


Theorem snexALT

Description: Alternate proof of snex using Power Set ( ax-pow ) instead of Pairing ( ax-pr ). Unlike in the proof of zfpair , Replacement ( ax-rep ) is not needed. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snexALT
|- { A } e. _V

Proof

Step Hyp Ref Expression
1 snsspw
 |-  { A } C_ ~P A
2 ssexg
 |-  ( ( { A } C_ ~P A /\ ~P A e. _V ) -> { A } e. _V )
3 1 2 mpan
 |-  ( ~P A e. _V -> { A } e. _V )
4 pwexg
 |-  ( A e. _V -> ~P A e. _V )
5 4 con3i
 |-  ( -. ~P A e. _V -> -. A e. _V )
6 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
7 6 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
8 0ex
 |-  (/) e. _V
9 7 8 eqeltrdi
 |-  ( -. A e. _V -> { A } e. _V )
10 5 9 syl
 |-  ( -. ~P A e. _V -> { A } e. _V )
11 3 10 pm2.61i
 |-  { A } e. _V