| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssexg |  |-  ( ( A C_ B /\ B e. V ) -> A e. _V ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. _V ) | 
						
							| 3 |  | simp2 |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A =/= (/) ) | 
						
							| 4 |  | snfil |  |-  ( ( A e. _V /\ A =/= (/) ) -> { A } e. ( Fil ` A ) ) | 
						
							| 5 | 2 3 4 | syl2anc |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( Fil ` A ) ) | 
						
							| 6 |  | filfbas |  |-  ( { A } e. ( Fil ` A ) -> { A } e. ( fBas ` A ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` A ) ) | 
						
							| 8 |  | simp1 |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A C_ B ) | 
						
							| 9 |  | elpw2g |  |-  ( B e. V -> ( A e. ~P B <-> A C_ B ) ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> ( A e. ~P B <-> A C_ B ) ) | 
						
							| 11 | 8 10 | mpbird |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. ~P B ) | 
						
							| 12 | 11 | snssd |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } C_ ~P B ) | 
						
							| 13 |  | simp3 |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> B e. V ) | 
						
							| 14 |  | fbasweak |  |-  ( ( { A } e. ( fBas ` A ) /\ { A } C_ ~P B /\ B e. V ) -> { A } e. ( fBas ` B ) ) | 
						
							| 15 | 7 12 13 14 | syl3anc |  |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) ) |