Metamath Proof Explorer


Theorem snfbas

Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion snfbas
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) )

Proof

Step Hyp Ref Expression
1 ssexg
 |-  ( ( A C_ B /\ B e. V ) -> A e. _V )
2 1 3adant2
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. _V )
3 simp2
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A =/= (/) )
4 snfil
 |-  ( ( A e. _V /\ A =/= (/) ) -> { A } e. ( Fil ` A ) )
5 2 3 4 syl2anc
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( Fil ` A ) )
6 filfbas
 |-  ( { A } e. ( Fil ` A ) -> { A } e. ( fBas ` A ) )
7 5 6 syl
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` A ) )
8 simp1
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A C_ B )
9 elpw2g
 |-  ( B e. V -> ( A e. ~P B <-> A C_ B ) )
10 9 3ad2ant3
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> ( A e. ~P B <-> A C_ B ) )
11 8 10 mpbird
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. ~P B )
12 11 snssd
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } C_ ~P B )
13 simp3
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> B e. V )
14 fbasweak
 |-  ( ( { A } e. ( fBas ` A ) /\ { A } C_ ~P B /\ B e. V ) -> { A } e. ( fBas ` B ) )
15 7 12 13 14 syl3anc
 |-  ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) )