Metamath Proof Explorer


Theorem snfi

Description: A singleton is finite. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion snfi
|- { A } e. Fin

Proof

Step Hyp Ref Expression
1 1onn
 |-  1o e. _om
2 ensn1g
 |-  ( A e. _V -> { A } ~~ 1o )
3 breq2
 |-  ( x = 1o -> ( { A } ~~ x <-> { A } ~~ 1o ) )
4 3 rspcev
 |-  ( ( 1o e. _om /\ { A } ~~ 1o ) -> E. x e. _om { A } ~~ x )
5 1 2 4 sylancr
 |-  ( A e. _V -> E. x e. _om { A } ~~ x )
6 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
7 en0
 |-  ( { A } ~~ (/) <-> { A } = (/) )
8 peano1
 |-  (/) e. _om
9 breq2
 |-  ( x = (/) -> ( { A } ~~ x <-> { A } ~~ (/) ) )
10 9 rspcev
 |-  ( ( (/) e. _om /\ { A } ~~ (/) ) -> E. x e. _om { A } ~~ x )
11 8 10 mpan
 |-  ( { A } ~~ (/) -> E. x e. _om { A } ~~ x )
12 7 11 sylbir
 |-  ( { A } = (/) -> E. x e. _om { A } ~~ x )
13 6 12 sylbi
 |-  ( -. A e. _V -> E. x e. _om { A } ~~ x )
14 5 13 pm2.61i
 |-  E. x e. _om { A } ~~ x
15 isfi
 |-  ( { A } e. Fin <-> E. x e. _om { A } ~~ x )
16 14 15 mpbir
 |-  { A } e. Fin