Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
|- 1o e. _om |
2 |
|
ensn1g |
|- ( A e. _V -> { A } ~~ 1o ) |
3 |
|
breq2 |
|- ( x = 1o -> ( { A } ~~ x <-> { A } ~~ 1o ) ) |
4 |
3
|
rspcev |
|- ( ( 1o e. _om /\ { A } ~~ 1o ) -> E. x e. _om { A } ~~ x ) |
5 |
1 2 4
|
sylancr |
|- ( A e. _V -> E. x e. _om { A } ~~ x ) |
6 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
7 |
|
en0 |
|- ( { A } ~~ (/) <-> { A } = (/) ) |
8 |
|
peano1 |
|- (/) e. _om |
9 |
|
breq2 |
|- ( x = (/) -> ( { A } ~~ x <-> { A } ~~ (/) ) ) |
10 |
9
|
rspcev |
|- ( ( (/) e. _om /\ { A } ~~ (/) ) -> E. x e. _om { A } ~~ x ) |
11 |
8 10
|
mpan |
|- ( { A } ~~ (/) -> E. x e. _om { A } ~~ x ) |
12 |
7 11
|
sylbir |
|- ( { A } = (/) -> E. x e. _om { A } ~~ x ) |
13 |
6 12
|
sylbi |
|- ( -. A e. _V -> E. x e. _om { A } ~~ x ) |
14 |
5 13
|
pm2.61i |
|- E. x e. _om { A } ~~ x |
15 |
|
isfi |
|- ( { A } e. Fin <-> E. x e. _om { A } ~~ x ) |
16 |
14 15
|
mpbir |
|- { A } e. Fin |