| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn |  |-  1o e. _om | 
						
							| 2 |  | ensn1g |  |-  ( A e. _V -> { A } ~~ 1o ) | 
						
							| 3 |  | breq2 |  |-  ( x = 1o -> ( { A } ~~ x <-> { A } ~~ 1o ) ) | 
						
							| 4 | 3 | rspcev |  |-  ( ( 1o e. _om /\ { A } ~~ 1o ) -> E. x e. _om { A } ~~ x ) | 
						
							| 5 | 1 2 4 | sylancr |  |-  ( A e. _V -> E. x e. _om { A } ~~ x ) | 
						
							| 6 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 7 |  | en0 |  |-  ( { A } ~~ (/) <-> { A } = (/) ) | 
						
							| 8 |  | peano1 |  |-  (/) e. _om | 
						
							| 9 |  | breq2 |  |-  ( x = (/) -> ( { A } ~~ x <-> { A } ~~ (/) ) ) | 
						
							| 10 | 9 | rspcev |  |-  ( ( (/) e. _om /\ { A } ~~ (/) ) -> E. x e. _om { A } ~~ x ) | 
						
							| 11 | 8 10 | mpan |  |-  ( { A } ~~ (/) -> E. x e. _om { A } ~~ x ) | 
						
							| 12 | 7 11 | sylbir |  |-  ( { A } = (/) -> E. x e. _om { A } ~~ x ) | 
						
							| 13 | 6 12 | sylbi |  |-  ( -. A e. _V -> E. x e. _om { A } ~~ x ) | 
						
							| 14 | 5 13 | pm2.61i |  |-  E. x e. _om { A } ~~ x | 
						
							| 15 |  | isfi |  |-  ( { A } e. Fin <-> E. x e. _om { A } ~~ x ) | 
						
							| 16 | 14 15 | mpbir |  |-  { A } e. Fin |