Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snn0d.1 | |- ( ph -> A e. V ) |
|
| Assertion | snn0d | |- ( ph -> { A } =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snn0d.1 | |- ( ph -> A e. V ) |
|
| 2 | snnzg | |- ( A e. V -> { A } =/= (/) ) |
|
| 3 | 1 2 | syl | |- ( ph -> { A } =/= (/) ) |