Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | snn0d.1 | |- ( ph -> A e. V ) |
|
Assertion | snn0d | |- ( ph -> { A } =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snn0d.1 | |- ( ph -> A e. V ) |
|
2 | snnzg | |- ( A e. V -> { A } =/= (/) ) |
|
3 | 1 2 | syl | |- ( ph -> { A } =/= (/) ) |