Metamath Proof Explorer


Theorem snnen2o

Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion snnen2o
|- -. { A } ~~ 2o

Proof

Step Hyp Ref Expression
1 1onn
 |-  1o e. _om
2 php5
 |-  ( 1o e. _om -> -. 1o ~~ suc 1o )
3 1 2 ax-mp
 |-  -. 1o ~~ suc 1o
4 ensn1g
 |-  ( A e. _V -> { A } ~~ 1o )
5 df-2o
 |-  2o = suc 1o
6 5 eqcomi
 |-  suc 1o = 2o
7 6 breq2i
 |-  ( 1o ~~ suc 1o <-> 1o ~~ 2o )
8 ensymb
 |-  ( { A } ~~ 1o <-> 1o ~~ { A } )
9 entr
 |-  ( ( 1o ~~ { A } /\ { A } ~~ 2o ) -> 1o ~~ 2o )
10 9 ex
 |-  ( 1o ~~ { A } -> ( { A } ~~ 2o -> 1o ~~ 2o ) )
11 8 10 sylbi
 |-  ( { A } ~~ 1o -> ( { A } ~~ 2o -> 1o ~~ 2o ) )
12 11 con3rr3
 |-  ( -. 1o ~~ 2o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) )
13 7 12 sylnbi
 |-  ( -. 1o ~~ suc 1o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) )
14 3 4 13 mpsyl
 |-  ( A e. _V -> -. { A } ~~ 2o )
15 2on0
 |-  2o =/= (/)
16 ensymb
 |-  ( (/) ~~ 2o <-> 2o ~~ (/) )
17 en0
 |-  ( 2o ~~ (/) <-> 2o = (/) )
18 16 17 bitri
 |-  ( (/) ~~ 2o <-> 2o = (/) )
19 15 18 nemtbir
 |-  -. (/) ~~ 2o
20 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
21 20 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
22 21 breq1d
 |-  ( -. A e. _V -> ( { A } ~~ 2o <-> (/) ~~ 2o ) )
23 19 22 mtbiri
 |-  ( -. A e. _V -> -. { A } ~~ 2o )
24 14 23 pm2.61i
 |-  -. { A } ~~ 2o