| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1onn |
|- 1o e. _om |
| 2 |
|
php5 |
|- ( 1o e. _om -> -. 1o ~~ suc 1o ) |
| 3 |
1 2
|
ax-mp |
|- -. 1o ~~ suc 1o |
| 4 |
|
ensn1g |
|- ( A e. _V -> { A } ~~ 1o ) |
| 5 |
|
df-2o |
|- 2o = suc 1o |
| 6 |
5
|
eqcomi |
|- suc 1o = 2o |
| 7 |
6
|
breq2i |
|- ( 1o ~~ suc 1o <-> 1o ~~ 2o ) |
| 8 |
|
ensymb |
|- ( { A } ~~ 1o <-> 1o ~~ { A } ) |
| 9 |
|
entr |
|- ( ( 1o ~~ { A } /\ { A } ~~ 2o ) -> 1o ~~ 2o ) |
| 10 |
9
|
ex |
|- ( 1o ~~ { A } -> ( { A } ~~ 2o -> 1o ~~ 2o ) ) |
| 11 |
8 10
|
sylbi |
|- ( { A } ~~ 1o -> ( { A } ~~ 2o -> 1o ~~ 2o ) ) |
| 12 |
11
|
con3rr3 |
|- ( -. 1o ~~ 2o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) ) |
| 13 |
7 12
|
sylnbi |
|- ( -. 1o ~~ suc 1o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) ) |
| 14 |
3 4 13
|
mpsyl |
|- ( A e. _V -> -. { A } ~~ 2o ) |
| 15 |
|
2on0 |
|- 2o =/= (/) |
| 16 |
|
ensymb |
|- ( (/) ~~ 2o <-> 2o ~~ (/) ) |
| 17 |
|
en0 |
|- ( 2o ~~ (/) <-> 2o = (/) ) |
| 18 |
16 17
|
bitri |
|- ( (/) ~~ 2o <-> 2o = (/) ) |
| 19 |
15 18
|
nemtbir |
|- -. (/) ~~ 2o |
| 20 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
| 21 |
20
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
| 22 |
21
|
breq1d |
|- ( -. A e. _V -> ( { A } ~~ 2o <-> (/) ~~ 2o ) ) |
| 23 |
19 22
|
mtbiri |
|- ( -. A e. _V -> -. { A } ~~ 2o ) |
| 24 |
14 23
|
pm2.61i |
|- -. { A } ~~ 2o |