Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snnz.1 | |- A e. _V |
|
| Assertion | snnz | |- { A } =/= (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | |- A e. _V |
|
| 2 | snnzg | |- ( A e. _V -> { A } =/= (/) ) |
|
| 3 | 1 2 | ax-mp | |- { A } =/= (/) |