Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | snnzb | |- ( A e. _V <-> { A } =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
2 | df-ne | |- ( { A } =/= (/) <-> -. { A } = (/) ) |
|
3 | 2 | con2bii | |- ( { A } = (/) <-> -. { A } =/= (/) ) |
4 | 1 3 | bitri | |- ( -. A e. _V <-> -. { A } =/= (/) ) |
5 | 4 | con4bii | |- ( A e. _V <-> { A } =/= (/) ) |