Metamath Proof Explorer


Theorem snopsuppss

Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019)

Ref Expression
Assertion snopsuppss
|- ( { <. X , Y >. } supp Z ) C_ { X }

Proof

Step Hyp Ref Expression
1 suppssdm
 |-  ( { <. X , Y >. } supp Z ) C_ dom { <. X , Y >. }
2 dmsnopss
 |-  dom { <. X , Y >. } C_ { X }
3 1 2 sstri
 |-  ( { <. X , Y >. } supp Z ) C_ { X }