Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of Quine p. 48. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snprc | |- ( -. A e. _V <-> { A } = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | velsn |  |-  ( x e. { A } <-> x = A ) | |
| 2 | 1 | exbii |  |-  ( E. x x e. { A } <-> E. x x = A ) | 
| 3 | neq0 |  |-  ( -. { A } = (/) <-> E. x x e. { A } ) | |
| 4 | isset | |- ( A e. _V <-> E. x x = A ) | |
| 5 | 2 3 4 | 3bitr4i |  |-  ( -. { A } = (/) <-> A e. _V ) | 
| 6 | 5 | con1bii |  |-  ( -. A e. _V <-> { A } = (/) ) |