Metamath Proof Explorer


Theorem snprc

Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of Quine p. 48. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion snprc
|- ( -. A e. _V <-> { A } = (/) )

Proof

Step Hyp Ref Expression
1 velsn
 |-  ( x e. { A } <-> x = A )
2 1 exbii
 |-  ( E. x x e. { A } <-> E. x x = A )
3 neq0
 |-  ( -. { A } = (/) <-> E. x x e. { A } )
4 isset
 |-  ( A e. _V <-> E. x x = A )
5 2 3 4 3bitr4i
 |-  ( -. { A } = (/) <-> A e. _V )
6 5 con1bii
 |-  ( -. A e. _V <-> { A } = (/) )