| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snres0.1 |  |-  B e. _V | 
						
							| 2 |  | relres |  |-  Rel ( { <. A , B >. } |` C ) | 
						
							| 3 |  | reldm0 |  |-  ( Rel ( { <. A , B >. } |` C ) -> ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) | 
						
							| 5 |  | dmres |  |-  dom ( { <. A , B >. } |` C ) = ( C i^i dom { <. A , B >. } ) | 
						
							| 6 | 1 | dmsnop |  |-  dom { <. A , B >. } = { A } | 
						
							| 7 | 6 | ineq2i |  |-  ( C i^i dom { <. A , B >. } ) = ( C i^i { A } ) | 
						
							| 8 | 5 7 | eqtri |  |-  dom ( { <. A , B >. } |` C ) = ( C i^i { A } ) | 
						
							| 9 | 8 | eqeq1i |  |-  ( dom ( { <. A , B >. } |` C ) = (/) <-> ( C i^i { A } ) = (/) ) | 
						
							| 10 |  | disjsn |  |-  ( ( C i^i { A } ) = (/) <-> -. A e. C ) | 
						
							| 11 | 4 9 10 | 3bitri |  |-  ( ( { <. A , B >. } |` C ) = (/) <-> -. A e. C ) |