Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson ). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj . (Contributed by NM, 21-May-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snsn0non | |- -. { { (/) } } e. On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snex |  |-  { (/) } e. _V | |
| 2 | 1 | snid |  |-  { (/) } e. { { (/) } } | 
| 3 | 2 | n0ii |  |-  -. { { (/) } } = (/) | 
| 4 | 0ex | |- (/) e. _V | |
| 5 | 4 | snid |  |-  (/) e. { (/) } | 
| 6 | 5 | n0ii |  |-  -. { (/) } = (/) | 
| 7 | eqcom |  |-  ( (/) = { (/) } <-> { (/) } = (/) ) | |
| 8 | 6 7 | mtbir |  |-  -. (/) = { (/) } | 
| 9 | 4 | elsn |  |-  ( (/) e. { { (/) } } <-> (/) = { (/) } ) | 
| 10 | 8 9 | mtbir |  |-  -. (/) e. { { (/) } } | 
| 11 | 3 10 | pm3.2ni |  |-  -. ( { { (/) } } = (/) \/ (/) e. { { (/) } } ) | 
| 12 | on0eqel |  |-  ( { { (/) } } e. On -> ( { { (/) } } = (/) \/ (/) e. { { (/) } } ) ) | |
| 13 | 11 12 | mto |  |-  -. { { (/) } } e. On |