Metamath Proof Explorer


Theorem snss

Description: The singleton of an element of a class is a subset of the class (inference form of snssg ). Theorem 7.4 of Quine p. 49. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis snss.1
|- A e. _V
Assertion snss
|- ( A e. B <-> { A } C_ B )

Proof

Step Hyp Ref Expression
1 snss.1
 |-  A e. _V
2 snssg
 |-  ( A e. _V -> ( A e. B <-> { A } C_ B ) )
3 1 2 ax-mp
 |-  ( A e. B <-> { A } C_ B )