Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of Quine p. 49. (Contributed by NM, 22-Jul-2001) (Proof shortened by BJ, 1-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | snssg | |- ( A e. V -> ( A e. B <-> { A } C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssb | |- ( { A } C_ B <-> ( A e. _V -> A e. B ) ) |
|
2 | 1 | bicomi | |- ( ( A e. _V -> A e. B ) <-> { A } C_ B ) |
3 | elex | |- ( A e. V -> A e. _V ) |
|
4 | imbibi | |- ( ( ( A e. _V -> A e. B ) <-> { A } C_ B ) -> ( A e. _V -> ( A e. B <-> { A } C_ B ) ) ) |
|
5 | 2 3 4 | mpsyl | |- ( A e. V -> ( A e. B <-> { A } C_ B ) ) |