Metamath Proof Explorer


Theorem snssg

Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of Quine p. 49. (Contributed by NM, 22-Jul-2001) (Proof shortened by BJ, 1-Jan-2025)

Ref Expression
Assertion snssg
|- ( A e. V -> ( A e. B <-> { A } C_ B ) )

Proof

Step Hyp Ref Expression
1 snssb
 |-  ( { A } C_ B <-> ( A e. _V -> A e. B ) )
2 1 bicomi
 |-  ( ( A e. _V -> A e. B ) <-> { A } C_ B )
3 elex
 |-  ( A e. V -> A e. _V )
4 imbibi
 |-  ( ( ( A e. _V -> A e. B ) <-> { A } C_ B ) -> ( A e. _V -> ( A e. B <-> { A } C_ B ) ) )
5 2 3 4 mpsyl
 |-  ( A e. V -> ( A e. B <-> { A } C_ B ) )