| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) | 
						
							| 2 |  | iccid |  |-  ( A e. RR* -> ( A [,] A ) = { A } ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( A [,] A ) = { A } ) | 
						
							| 4 | 3 | uneq1d |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( { A } u. ( A (,) B ) ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) | 
						
							| 6 | 1 | xrleidd |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A <_ A ) | 
						
							| 7 |  | simp3 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) | 
						
							| 8 |  | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | 
						
							| 9 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 10 |  | xrltnle |  |-  ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) | 
						
							| 11 |  | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
							| 12 |  | xrlelttr |  |-  ( ( w e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( w <_ A /\ A < B ) -> w < B ) ) | 
						
							| 13 |  | xrltle |  |-  ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) | 
						
							| 15 | 14 | adantld |  |-  ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( A <_ A /\ A < w ) -> A <_ w ) ) | 
						
							| 16 | 8 9 10 11 12 15 | ixxun |  |-  ( ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ A < B ) ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 17 | 1 1 5 6 7 16 | syl32anc |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 18 | 4 17 | eqtr3d |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |