| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom |  |-  ( ( A (,) B ) u. ( A [,] A ) ) = ( ( A [,] A ) u. ( A (,) B ) ) | 
						
							| 2 |  | iccid |  |-  ( A e. RR* -> ( A [,] A ) = { A } ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( A [,] A ) = { A } ) | 
						
							| 4 | 3 | uneq2d |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( A [,] A ) ) = ( ( A (,) B ) u. { A } ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) | 
						
							| 6 |  | simp2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) | 
						
							| 7 |  | xrleid |  |-  ( A e. RR* -> A <_ A ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A <_ A ) | 
						
							| 9 |  | simp3 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) | 
						
							| 10 |  | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | 
						
							| 11 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 12 |  | xrltnle |  |-  ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) | 
						
							| 13 |  | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
							| 14 |  | xrlelttr |  |-  ( ( w e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( w <_ A /\ A < B ) -> w < B ) ) | 
						
							| 15 |  | simpl1 |  |-  ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A e. RR* ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> w e. RR* ) | 
						
							| 17 |  | simprr |  |-  ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A < w ) | 
						
							| 18 | 15 16 17 | xrltled |  |-  ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A <_ w ) | 
						
							| 19 | 18 | ex |  |-  ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( A <_ A /\ A < w ) -> A <_ w ) ) | 
						
							| 20 | 10 11 12 13 14 19 | ixxun |  |-  ( ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ A < B ) ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 21 | 5 5 6 8 9 20 | syl32anc |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 22 | 1 4 21 | 3eqtr3a |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |