Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | so0 | |- R Or (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 | |- R Po (/) |
|
| 2 | ral0 | |- A. x e. (/) A. y e. (/) ( x R y \/ x = y \/ y R x ) |
|
| 3 | df-so | |- ( R Or (/) <-> ( R Po (/) /\ A. x e. (/) A. y e. (/) ( x R y \/ x = y \/ y R x ) ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- R Or (/) |