Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | so2nr | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo | |- ( R Or A -> R Po A ) |
|
| 2 | po2nr | |- ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |