Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | soasym | |- ( ( R Or A /\ ( X e. A /\ Y e. A ) ) -> ( X R Y -> -. Y R X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotric | |- ( ( R Or A /\ ( X e. A /\ Y e. A ) ) -> ( X R Y <-> -. ( X = Y \/ Y R X ) ) ) |
|
2 | pm2.46 | |- ( -. ( X = Y \/ Y R X ) -> -. Y R X ) |
|
3 | 1 2 | syl6bi | |- ( ( R Or A /\ ( X e. A /\ Y e. A ) ) -> ( X R Y -> -. Y R X ) ) |