Metamath Proof Explorer


Theorem soeq12d

Description: Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses weeq12d.l
|- ( ph -> R = S )
weeq12d.r
|- ( ph -> A = B )
Assertion soeq12d
|- ( ph -> ( R Or A <-> S Or B ) )

Proof

Step Hyp Ref Expression
1 weeq12d.l
 |-  ( ph -> R = S )
2 weeq12d.r
 |-  ( ph -> A = B )
3 soeq1
 |-  ( R = S -> ( R Or A <-> S Or A ) )
4 1 3 syl
 |-  ( ph -> ( R Or A <-> S Or A ) )
5 soeq2
 |-  ( A = B -> ( S Or A <-> S Or B ) )
6 2 5 syl
 |-  ( ph -> ( S Or A <-> S Or B ) )
7 4 6 bitrd
 |-  ( ph -> ( R Or A <-> S Or B ) )