Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soeq2 | |- ( A = B -> ( R Or A <-> R Or B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soss | |- ( A C_ B -> ( R Or B -> R Or A ) ) |
|
| 2 | soss | |- ( B C_ A -> ( R Or A -> R Or B ) ) |
|
| 3 | 1 2 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( ( R Or B -> R Or A ) /\ ( R Or A -> R Or B ) ) ) |
| 4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 5 | dfbi2 | |- ( ( R Or B <-> R Or A ) <-> ( ( R Or B -> R Or A ) /\ ( R Or A -> R Or B ) ) ) |
|
| 6 | 3 4 5 | 3imtr4i | |- ( A = B -> ( R Or B <-> R Or A ) ) |
| 7 | 6 | bicomd | |- ( A = B -> ( R Or A <-> R Or B ) ) |