Metamath Proof Explorer


Theorem soex

Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion soex
|- ( ( R Or A /\ R e. V ) -> A e. _V )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ( R Or A /\ R e. V ) /\ A = (/) ) -> A = (/) )
2 0ex
 |-  (/) e. _V
3 1 2 eqeltrdi
 |-  ( ( ( R Or A /\ R e. V ) /\ A = (/) ) -> A e. _V )
4 n0
 |-  ( A =/= (/) <-> E. x x e. A )
5 snex
 |-  { x } e. _V
6 dmexg
 |-  ( R e. V -> dom R e. _V )
7 rnexg
 |-  ( R e. V -> ran R e. _V )
8 unexg
 |-  ( ( dom R e. _V /\ ran R e. _V ) -> ( dom R u. ran R ) e. _V )
9 6 7 8 syl2anc
 |-  ( R e. V -> ( dom R u. ran R ) e. _V )
10 unexg
 |-  ( ( { x } e. _V /\ ( dom R u. ran R ) e. _V ) -> ( { x } u. ( dom R u. ran R ) ) e. _V )
11 5 9 10 sylancr
 |-  ( R e. V -> ( { x } u. ( dom R u. ran R ) ) e. _V )
12 11 ad2antlr
 |-  ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> ( { x } u. ( dom R u. ran R ) ) e. _V )
13 sossfld
 |-  ( ( R Or A /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) )
14 13 adantlr
 |-  ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) )
15 ssundif
 |-  ( A C_ ( { x } u. ( dom R u. ran R ) ) <-> ( A \ { x } ) C_ ( dom R u. ran R ) )
16 14 15 sylibr
 |-  ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> A C_ ( { x } u. ( dom R u. ran R ) ) )
17 12 16 ssexd
 |-  ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> A e. _V )
18 17 ex
 |-  ( ( R Or A /\ R e. V ) -> ( x e. A -> A e. _V ) )
19 18 exlimdv
 |-  ( ( R Or A /\ R e. V ) -> ( E. x x e. A -> A e. _V ) )
20 19 imp
 |-  ( ( ( R Or A /\ R e. V ) /\ E. x x e. A ) -> A e. _V )
21 4 20 sylan2b
 |-  ( ( ( R Or A /\ R e. V ) /\ A =/= (/) ) -> A e. _V )
22 3 21 pm2.61dane
 |-  ( ( R Or A /\ R e. V ) -> A e. _V )