| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relxp |  |-  Rel ( A X. A ) | 
						
							| 2 |  | relss |  |-  ( R C_ ( A X. A ) -> ( Rel ( A X. A ) -> Rel R ) ) | 
						
							| 3 | 1 2 | mpi |  |-  ( R C_ ( A X. A ) -> Rel R ) | 
						
							| 4 | 3 | ad2antlr |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> Rel R ) | 
						
							| 5 |  | df-br |  |-  ( x R y <-> <. x , y >. e. R ) | 
						
							| 6 |  | ssun1 |  |-  A C_ ( A u. { x } ) | 
						
							| 7 |  | undif1 |  |-  ( ( A \ { x } ) u. { x } ) = ( A u. { x } ) | 
						
							| 8 | 6 7 | sseqtrri |  |-  A C_ ( ( A \ { x } ) u. { x } ) | 
						
							| 9 |  | simpll |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> R Or A ) | 
						
							| 10 |  | dmss |  |-  ( R C_ ( A X. A ) -> dom R C_ dom ( A X. A ) ) | 
						
							| 11 |  | dmxpid |  |-  dom ( A X. A ) = A | 
						
							| 12 | 10 11 | sseqtrdi |  |-  ( R C_ ( A X. A ) -> dom R C_ A ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> dom R C_ A ) | 
						
							| 14 | 3 | ad2antlr |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> Rel R ) | 
						
							| 15 |  | releldm |  |-  ( ( Rel R /\ x R y ) -> x e. dom R ) | 
						
							| 16 | 14 15 | sylancom |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. dom R ) | 
						
							| 17 | 13 16 | sseldd |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. A ) | 
						
							| 18 |  | sossfld |  |-  ( ( R Or A /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) | 
						
							| 19 | 9 17 18 | syl2anc |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) | 
						
							| 20 |  | ssun1 |  |-  dom R C_ ( dom R u. ran R ) | 
						
							| 21 | 20 16 | sselid |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. ( dom R u. ran R ) ) | 
						
							| 22 | 21 | snssd |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> { x } C_ ( dom R u. ran R ) ) | 
						
							| 23 | 19 22 | unssd |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( ( A \ { x } ) u. { x } ) C_ ( dom R u. ran R ) ) | 
						
							| 24 | 8 23 | sstrid |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> A C_ ( dom R u. ran R ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( R Or A /\ R C_ ( A X. A ) ) -> ( x R y -> A C_ ( dom R u. ran R ) ) ) | 
						
							| 26 | 5 25 | biimtrrid |  |-  ( ( R Or A /\ R C_ ( A X. A ) ) -> ( <. x , y >. e. R -> A C_ ( dom R u. ran R ) ) ) | 
						
							| 27 | 26 | con3dimp |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> -. <. x , y >. e. R ) | 
						
							| 28 | 27 | pm2.21d |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> ( <. x , y >. e. R -> <. x , y >. e. (/) ) ) | 
						
							| 29 | 4 28 | relssdv |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R C_ (/) ) | 
						
							| 30 |  | ss0 |  |-  ( R C_ (/) -> R = (/) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R = (/) ) | 
						
							| 32 | 31 | ex |  |-  ( ( R Or A /\ R C_ ( A X. A ) ) -> ( -. A C_ ( dom R u. ran R ) -> R = (/) ) ) | 
						
							| 33 | 32 | necon1ad |  |-  ( ( R Or A /\ R C_ ( A X. A ) ) -> ( R =/= (/) -> A C_ ( dom R u. ran R ) ) ) | 
						
							| 34 | 33 | 3impia |  |-  ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A C_ ( dom R u. ran R ) ) | 
						
							| 35 |  | rnss |  |-  ( R C_ ( A X. A ) -> ran R C_ ran ( A X. A ) ) | 
						
							| 36 |  | rnxpid |  |-  ran ( A X. A ) = A | 
						
							| 37 | 35 36 | sseqtrdi |  |-  ( R C_ ( A X. A ) -> ran R C_ A ) | 
						
							| 38 | 12 37 | unssd |  |-  ( R C_ ( A X. A ) -> ( dom R u. ran R ) C_ A ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> ( dom R u. ran R ) C_ A ) | 
						
							| 40 | 34 39 | eqssd |  |-  ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A = ( dom R u. ran R ) ) |