Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
|- Rel ( A X. A ) |
2 |
|
relss |
|- ( R C_ ( A X. A ) -> ( Rel ( A X. A ) -> Rel R ) ) |
3 |
1 2
|
mpi |
|- ( R C_ ( A X. A ) -> Rel R ) |
4 |
3
|
ad2antlr |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> Rel R ) |
5 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
6 |
|
ssun1 |
|- A C_ ( A u. { x } ) |
7 |
|
undif1 |
|- ( ( A \ { x } ) u. { x } ) = ( A u. { x } ) |
8 |
6 7
|
sseqtrri |
|- A C_ ( ( A \ { x } ) u. { x } ) |
9 |
|
simpll |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> R Or A ) |
10 |
|
dmss |
|- ( R C_ ( A X. A ) -> dom R C_ dom ( A X. A ) ) |
11 |
|
dmxpid |
|- dom ( A X. A ) = A |
12 |
10 11
|
sseqtrdi |
|- ( R C_ ( A X. A ) -> dom R C_ A ) |
13 |
12
|
ad2antlr |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> dom R C_ A ) |
14 |
3
|
ad2antlr |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> Rel R ) |
15 |
|
releldm |
|- ( ( Rel R /\ x R y ) -> x e. dom R ) |
16 |
14 15
|
sylancom |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. dom R ) |
17 |
13 16
|
sseldd |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. A ) |
18 |
|
sossfld |
|- ( ( R Or A /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
19 |
9 17 18
|
syl2anc |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
20 |
|
ssun1 |
|- dom R C_ ( dom R u. ran R ) |
21 |
20 16
|
sselid |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. ( dom R u. ran R ) ) |
22 |
21
|
snssd |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> { x } C_ ( dom R u. ran R ) ) |
23 |
19 22
|
unssd |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( ( A \ { x } ) u. { x } ) C_ ( dom R u. ran R ) ) |
24 |
8 23
|
sstrid |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> A C_ ( dom R u. ran R ) ) |
25 |
24
|
ex |
|- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( x R y -> A C_ ( dom R u. ran R ) ) ) |
26 |
5 25
|
syl5bir |
|- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( <. x , y >. e. R -> A C_ ( dom R u. ran R ) ) ) |
27 |
26
|
con3dimp |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> -. <. x , y >. e. R ) |
28 |
27
|
pm2.21d |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> ( <. x , y >. e. R -> <. x , y >. e. (/) ) ) |
29 |
4 28
|
relssdv |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R C_ (/) ) |
30 |
|
ss0 |
|- ( R C_ (/) -> R = (/) ) |
31 |
29 30
|
syl |
|- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R = (/) ) |
32 |
31
|
ex |
|- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( -. A C_ ( dom R u. ran R ) -> R = (/) ) ) |
33 |
32
|
necon1ad |
|- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( R =/= (/) -> A C_ ( dom R u. ran R ) ) ) |
34 |
33
|
3impia |
|- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A C_ ( dom R u. ran R ) ) |
35 |
|
rnss |
|- ( R C_ ( A X. A ) -> ran R C_ ran ( A X. A ) ) |
36 |
|
rnxpid |
|- ran ( A X. A ) = A |
37 |
35 36
|
sseqtrdi |
|- ( R C_ ( A X. A ) -> ran R C_ A ) |
38 |
12 37
|
unssd |
|- ( R C_ ( A X. A ) -> ( dom R u. ran R ) C_ A ) |
39 |
38
|
3ad2ant2 |
|- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> ( dom R u. ran R ) C_ A ) |
40 |
34 39
|
eqssd |
|- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A = ( dom R u. ran R ) ) |