Metamath Proof Explorer


Theorem solin

Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion solin
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( x = B -> ( x R y <-> B R y ) )
2 eqeq1
 |-  ( x = B -> ( x = y <-> B = y ) )
3 breq2
 |-  ( x = B -> ( y R x <-> y R B ) )
4 1 2 3 3orbi123d
 |-  ( x = B -> ( ( x R y \/ x = y \/ y R x ) <-> ( B R y \/ B = y \/ y R B ) ) )
5 4 imbi2d
 |-  ( x = B -> ( ( R Or A -> ( x R y \/ x = y \/ y R x ) ) <-> ( R Or A -> ( B R y \/ B = y \/ y R B ) ) ) )
6 breq2
 |-  ( y = C -> ( B R y <-> B R C ) )
7 eqeq2
 |-  ( y = C -> ( B = y <-> B = C ) )
8 breq1
 |-  ( y = C -> ( y R B <-> C R B ) )
9 6 7 8 3orbi123d
 |-  ( y = C -> ( ( B R y \/ B = y \/ y R B ) <-> ( B R C \/ B = C \/ C R B ) ) )
10 9 imbi2d
 |-  ( y = C -> ( ( R Or A -> ( B R y \/ B = y \/ y R B ) ) <-> ( R Or A -> ( B R C \/ B = C \/ C R B ) ) ) )
11 df-so
 |-  ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) )
12 rsp2
 |-  ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) -> ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) )
13 11 12 simplbiim
 |-  ( R Or A -> ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) )
14 13 com12
 |-  ( ( x e. A /\ y e. A ) -> ( R Or A -> ( x R y \/ x = y \/ y R x ) ) )
15 5 10 14 vtocl2ga
 |-  ( ( B e. A /\ C e. A ) -> ( R Or A -> ( B R C \/ B = C \/ C R B ) ) )
16 15 impcom
 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) )