Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
|- ( A R B -> if ( A R B , A , B ) = A ) |
2 |
1
|
olcd |
|- ( A R B -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
3 |
2
|
adantl |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
4 |
|
sotric |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( A = B \/ B R A ) ) ) |
5 |
|
orcom |
|- ( ( A = B \/ B R A ) <-> ( B R A \/ A = B ) ) |
6 |
|
eqcom |
|- ( A = B <-> B = A ) |
7 |
6
|
orbi2i |
|- ( ( B R A \/ A = B ) <-> ( B R A \/ B = A ) ) |
8 |
5 7
|
bitri |
|- ( ( A = B \/ B R A ) <-> ( B R A \/ B = A ) ) |
9 |
8
|
notbii |
|- ( -. ( A = B \/ B R A ) <-> -. ( B R A \/ B = A ) ) |
10 |
4 9
|
bitrdi |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( B R A \/ B = A ) ) ) |
11 |
10
|
con2bid |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( ( B R A \/ B = A ) <-> -. A R B ) ) |
12 |
11
|
biimpar |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( B R A \/ B = A ) ) |
13 |
|
iffalse |
|- ( -. A R B -> if ( A R B , A , B ) = B ) |
14 |
|
breq1 |
|- ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) R A <-> B R A ) ) |
15 |
|
eqeq1 |
|- ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) = A <-> B = A ) ) |
16 |
14 15
|
orbi12d |
|- ( if ( A R B , A , B ) = B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
17 |
13 16
|
syl |
|- ( -. A R B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
18 |
17
|
adantl |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
19 |
12 18
|
mpbird |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
20 |
3 19
|
pm2.61dan |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
21 |
|
poleloe |
|- ( A e. X -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) |
22 |
21
|
ad2antrl |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) |
23 |
20 22
|
mpbird |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) ( R u. _I ) A ) |