| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue |  |-  ( A R B -> if ( A R B , A , B ) = A ) | 
						
							| 2 | 1 | olcd |  |-  ( A R B -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) | 
						
							| 4 |  | sotric |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( A = B \/ B R A ) ) ) | 
						
							| 5 |  | orcom |  |-  ( ( A = B \/ B R A ) <-> ( B R A \/ A = B ) ) | 
						
							| 6 |  | eqcom |  |-  ( A = B <-> B = A ) | 
						
							| 7 | 6 | orbi2i |  |-  ( ( B R A \/ A = B ) <-> ( B R A \/ B = A ) ) | 
						
							| 8 | 5 7 | bitri |  |-  ( ( A = B \/ B R A ) <-> ( B R A \/ B = A ) ) | 
						
							| 9 | 8 | notbii |  |-  ( -. ( A = B \/ B R A ) <-> -. ( B R A \/ B = A ) ) | 
						
							| 10 | 4 9 | bitrdi |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( B R A \/ B = A ) ) ) | 
						
							| 11 | 10 | con2bid |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( ( B R A \/ B = A ) <-> -. A R B ) ) | 
						
							| 12 | 11 | biimpar |  |-  ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( B R A \/ B = A ) ) | 
						
							| 13 |  | iffalse |  |-  ( -. A R B -> if ( A R B , A , B ) = B ) | 
						
							| 14 |  | breq1 |  |-  ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) R A <-> B R A ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) = A <-> B = A ) ) | 
						
							| 16 | 14 15 | orbi12d |  |-  ( if ( A R B , A , B ) = B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) | 
						
							| 17 | 13 16 | syl |  |-  ( -. A R B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) | 
						
							| 19 | 12 18 | mpbird |  |-  ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) | 
						
							| 20 | 3 19 | pm2.61dan |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) | 
						
							| 21 |  | poleloe |  |-  ( A e. X -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) | 
						
							| 22 | 21 | ad2antrl |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) | 
						
							| 23 | 20 22 | mpbird |  |-  ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) ( R u. _I ) A ) |