Step |
Hyp |
Ref |
Expression |
1 |
|
so2nr |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) |
2 |
|
nan |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) <-> ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> -. B R A ) ) |
3 |
1 2
|
mpbi |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> -. B R A ) |
4 |
3
|
iffalsed |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> if ( B R A , B , A ) = A ) |
5 |
4
|
eqcomd |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> A = if ( B R A , B , A ) ) |
6 |
|
sotric |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( A = B \/ B R A ) ) ) |
7 |
6
|
con2bid |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( ( A = B \/ B R A ) <-> -. A R B ) ) |
8 |
|
ifeq2 |
|- ( A = B -> if ( B R A , B , A ) = if ( B R A , B , B ) ) |
9 |
|
ifid |
|- if ( B R A , B , B ) = B |
10 |
8 9
|
eqtr2di |
|- ( A = B -> B = if ( B R A , B , A ) ) |
11 |
|
iftrue |
|- ( B R A -> if ( B R A , B , A ) = B ) |
12 |
11
|
eqcomd |
|- ( B R A -> B = if ( B R A , B , A ) ) |
13 |
10 12
|
jaoi |
|- ( ( A = B \/ B R A ) -> B = if ( B R A , B , A ) ) |
14 |
7 13
|
syl6bir |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( -. A R B -> B = if ( B R A , B , A ) ) ) |
15 |
14
|
imp |
|- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> B = if ( B R A , B , A ) ) |
16 |
5 15
|
ifeqda |
|- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) = if ( B R A , B , A ) ) |