Metamath Proof Explorer


Theorem son2lpi

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1
|- R Or S
soi.2
|- R C_ ( S X. S )
Assertion son2lpi
|- -. ( A R B /\ B R A )

Proof

Step Hyp Ref Expression
1 soi.1
 |-  R Or S
2 soi.2
 |-  R C_ ( S X. S )
3 1 2 soirri
 |-  -. A R A
4 1 2 sotri
 |-  ( ( A R B /\ B R A ) -> A R A )
5 3 4 mto
 |-  -. ( A R B /\ B R A )