Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> R Po ran F ) |
2 |
|
fvelrnb |
|- ( F Fn _om -> ( b e. ran F <-> E. d e. _om ( F ` d ) = b ) ) |
3 |
|
fvelrnb |
|- ( F Fn _om -> ( c e. ran F <-> E. e e. _om ( F ` e ) = c ) ) |
4 |
2 3
|
anbi12d |
|- ( F Fn _om -> ( ( b e. ran F /\ c e. ran F ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( b e. ran F /\ c e. ran F ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) ) |
6 |
|
reeanv |
|- ( E. d e. _om E. e e. _om ( ( F ` d ) = b /\ ( F ` e ) = c ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) |
7 |
|
nnord |
|- ( d e. _om -> Ord d ) |
8 |
|
nnord |
|- ( e e. _om -> Ord e ) |
9 |
|
ordtri2or2 |
|- ( ( Ord d /\ Ord e ) -> ( d C_ e \/ e C_ d ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( d e. _om /\ e e. _om ) -> ( d C_ e \/ e C_ d ) ) |
11 |
10
|
adantl |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e \/ e C_ d ) ) |
12 |
|
vex |
|- d e. _V |
13 |
|
vex |
|- e e. _V |
14 |
|
eleq1w |
|- ( b = d -> ( b e. _om <-> d e. _om ) ) |
15 |
|
eleq1w |
|- ( c = e -> ( c e. _om <-> e e. _om ) ) |
16 |
14 15
|
bi2anan9 |
|- ( ( b = d /\ c = e ) -> ( ( b e. _om /\ c e. _om ) <-> ( d e. _om /\ e e. _om ) ) ) |
17 |
16
|
anbi2d |
|- ( ( b = d /\ c = e ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) ) ) |
18 |
|
sseq12 |
|- ( ( b = d /\ c = e ) -> ( b C_ c <-> d C_ e ) ) |
19 |
|
fveq2 |
|- ( b = d -> ( F ` b ) = ( F ` d ) ) |
20 |
|
fveq2 |
|- ( c = e -> ( F ` c ) = ( F ` e ) ) |
21 |
19 20
|
breqan12d |
|- ( ( b = d /\ c = e ) -> ( ( F ` b ) R ( F ` c ) <-> ( F ` d ) R ( F ` e ) ) ) |
22 |
19 20
|
eqeqan12d |
|- ( ( b = d /\ c = e ) -> ( ( F ` b ) = ( F ` c ) <-> ( F ` d ) = ( F ` e ) ) ) |
23 |
21 22
|
orbi12d |
|- ( ( b = d /\ c = e ) -> ( ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) <-> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) |
24 |
18 23
|
imbi12d |
|- ( ( b = d /\ c = e ) -> ( ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) <-> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) ) |
25 |
17 24
|
imbi12d |
|- ( ( b = d /\ c = e ) -> ( ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) <-> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) ) ) |
26 |
|
fveq2 |
|- ( d = b -> ( F ` d ) = ( F ` b ) ) |
27 |
26
|
breq2d |
|- ( d = b -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` b ) ) ) |
28 |
26
|
eqeq2d |
|- ( d = b -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` b ) ) ) |
29 |
27 28
|
orbi12d |
|- ( d = b -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) |
30 |
29
|
imbi2d |
|- ( d = b -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) ) |
31 |
|
fveq2 |
|- ( d = e -> ( F ` d ) = ( F ` e ) ) |
32 |
31
|
breq2d |
|- ( d = e -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` e ) ) ) |
33 |
31
|
eqeq2d |
|- ( d = e -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` e ) ) ) |
34 |
32 33
|
orbi12d |
|- ( d = e -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) ) |
35 |
34
|
imbi2d |
|- ( d = e -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) ) ) |
36 |
|
fveq2 |
|- ( d = suc e -> ( F ` d ) = ( F ` suc e ) ) |
37 |
36
|
breq2d |
|- ( d = suc e -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` suc e ) ) ) |
38 |
36
|
eqeq2d |
|- ( d = suc e -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` suc e ) ) ) |
39 |
37 38
|
orbi12d |
|- ( d = suc e -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
40 |
39
|
imbi2d |
|- ( d = suc e -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
41 |
|
fveq2 |
|- ( d = c -> ( F ` d ) = ( F ` c ) ) |
42 |
41
|
breq2d |
|- ( d = c -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` c ) ) ) |
43 |
41
|
eqeq2d |
|- ( d = c -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` c ) ) ) |
44 |
42 43
|
orbi12d |
|- ( d = c -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
45 |
44
|
imbi2d |
|- ( d = c -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) ) |
46 |
|
eqid |
|- ( F ` b ) = ( F ` b ) |
47 |
46
|
olci |
|- ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) |
48 |
47
|
2a1i |
|- ( b e. _om -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) |
49 |
|
fveq2 |
|- ( a = e -> ( F ` a ) = ( F ` e ) ) |
50 |
|
suceq |
|- ( a = e -> suc a = suc e ) |
51 |
50
|
fveq2d |
|- ( a = e -> ( F ` suc a ) = ( F ` suc e ) ) |
52 |
49 51
|
breq12d |
|- ( a = e -> ( ( F ` a ) R ( F ` suc a ) <-> ( F ` e ) R ( F ` suc e ) ) ) |
53 |
49 51
|
eqeq12d |
|- ( a = e -> ( ( F ` a ) = ( F ` suc a ) <-> ( F ` e ) = ( F ` suc e ) ) ) |
54 |
52 53
|
orbi12d |
|- ( a = e -> ( ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) <-> ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) ) ) |
55 |
|
simpr2 |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) ) |
56 |
|
simplll |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> e e. _om ) |
57 |
54 55 56
|
rspcdva |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) ) |
58 |
|
simprr |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> R Po ran F ) |
59 |
|
simprl |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> F Fn _om ) |
60 |
|
simpllr |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> b e. _om ) |
61 |
|
fnfvelrn |
|- ( ( F Fn _om /\ b e. _om ) -> ( F ` b ) e. ran F ) |
62 |
59 60 61
|
syl2anc |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` b ) e. ran F ) |
63 |
|
simplll |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> e e. _om ) |
64 |
|
fnfvelrn |
|- ( ( F Fn _om /\ e e. _om ) -> ( F ` e ) e. ran F ) |
65 |
59 63 64
|
syl2anc |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` e ) e. ran F ) |
66 |
|
peano2 |
|- ( e e. _om -> suc e e. _om ) |
67 |
66
|
ad3antrrr |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> suc e e. _om ) |
68 |
|
fnfvelrn |
|- ( ( F Fn _om /\ suc e e. _om ) -> ( F ` suc e ) e. ran F ) |
69 |
59 67 68
|
syl2anc |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` suc e ) e. ran F ) |
70 |
|
potr |
|- ( ( R Po ran F /\ ( ( F ` b ) e. ran F /\ ( F ` e ) e. ran F /\ ( F ` suc e ) e. ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( F ` b ) R ( F ` suc e ) ) ) |
71 |
58 62 65 69 70
|
syl13anc |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( F ` b ) R ( F ` suc e ) ) ) |
72 |
71
|
imp |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) ) -> ( F ` b ) R ( F ` suc e ) ) |
73 |
72
|
ancom2s |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` e ) R ( F ` suc e ) /\ ( F ` b ) R ( F ` e ) ) ) -> ( F ` b ) R ( F ` suc e ) ) |
74 |
73
|
orcd |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` e ) R ( F ` suc e ) /\ ( F ` b ) R ( F ` e ) ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) |
75 |
74
|
expr |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( F ` b ) R ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
76 |
|
breq1 |
|- ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) <-> ( F ` e ) R ( F ` suc e ) ) ) |
77 |
76
|
biimprcd |
|- ( ( F ` e ) R ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) -> ( F ` b ) R ( F ` suc e ) ) ) |
78 |
|
orc |
|- ( ( F ` b ) R ( F ` suc e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) |
79 |
77 78
|
syl6 |
|- ( ( F ` e ) R ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
80 |
79
|
adantl |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
81 |
75 80
|
jaod |
|- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
82 |
81
|
ex |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( F ` e ) R ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
83 |
|
breq2 |
|- ( ( F ` e ) = ( F ` suc e ) -> ( ( F ` b ) R ( F ` e ) <-> ( F ` b ) R ( F ` suc e ) ) ) |
84 |
|
eqeq2 |
|- ( ( F ` e ) = ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) <-> ( F ` b ) = ( F ` suc e ) ) ) |
85 |
83 84
|
orbi12d |
|- ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) <-> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
86 |
85
|
biimpd |
|- ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
87 |
86
|
a1i |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
88 |
82 87
|
jaod |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
89 |
88
|
3adantr2 |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
90 |
57 89
|
mpd |
|- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
91 |
90
|
ex |
|- ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
92 |
91
|
a2d |
|- ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
93 |
30 35 40 45 48 92
|
findsg |
|- ( ( ( c e. _om /\ b e. _om ) /\ b C_ c ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
94 |
93
|
ancom1s |
|- ( ( ( b e. _om /\ c e. _om ) /\ b C_ c ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
95 |
94
|
impcom |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( ( b e. _om /\ c e. _om ) /\ b C_ c ) ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) |
96 |
95
|
expr |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
97 |
12 13 25 96
|
vtocl2 |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) |
98 |
|
eleq1w |
|- ( b = e -> ( b e. _om <-> e e. _om ) ) |
99 |
|
eleq1w |
|- ( c = d -> ( c e. _om <-> d e. _om ) ) |
100 |
98 99
|
bi2anan9 |
|- ( ( b = e /\ c = d ) -> ( ( b e. _om /\ c e. _om ) <-> ( e e. _om /\ d e. _om ) ) ) |
101 |
100
|
anbi2d |
|- ( ( b = e /\ c = d ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) ) ) |
102 |
|
sseq12 |
|- ( ( b = e /\ c = d ) -> ( b C_ c <-> e C_ d ) ) |
103 |
|
fveq2 |
|- ( b = e -> ( F ` b ) = ( F ` e ) ) |
104 |
|
fveq2 |
|- ( c = d -> ( F ` c ) = ( F ` d ) ) |
105 |
103 104
|
breqan12d |
|- ( ( b = e /\ c = d ) -> ( ( F ` b ) R ( F ` c ) <-> ( F ` e ) R ( F ` d ) ) ) |
106 |
103 104
|
eqeqan12d |
|- ( ( b = e /\ c = d ) -> ( ( F ` b ) = ( F ` c ) <-> ( F ` e ) = ( F ` d ) ) ) |
107 |
105 106
|
orbi12d |
|- ( ( b = e /\ c = d ) -> ( ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) <-> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
108 |
102 107
|
imbi12d |
|- ( ( b = e /\ c = d ) -> ( ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) <-> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) |
109 |
101 108
|
imbi12d |
|- ( ( b = e /\ c = d ) -> ( ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) <-> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) ) |
110 |
13 12 109 96
|
vtocl2 |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
111 |
110
|
ancom2s |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
112 |
97 111
|
orim12d |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( d C_ e \/ e C_ d ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) |
113 |
11 112
|
mpd |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
114 |
|
3mix1 |
|- ( ( F ` d ) R ( F ` e ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
115 |
|
3mix2 |
|- ( ( F ` d ) = ( F ` e ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
116 |
114 115
|
jaoi |
|- ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
117 |
|
3mix3 |
|- ( ( F ` e ) R ( F ` d ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
118 |
115
|
eqcoms |
|- ( ( F ` e ) = ( F ` d ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
119 |
117 118
|
jaoi |
|- ( ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
120 |
116 119
|
jaoi |
|- ( ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
121 |
113 120
|
syl |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
122 |
|
breq12 |
|- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` d ) R ( F ` e ) <-> b R c ) ) |
123 |
|
eqeq12 |
|- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` d ) = ( F ` e ) <-> b = c ) ) |
124 |
|
breq12 |
|- ( ( ( F ` e ) = c /\ ( F ` d ) = b ) -> ( ( F ` e ) R ( F ` d ) <-> c R b ) ) |
125 |
124
|
ancoms |
|- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` e ) R ( F ` d ) <-> c R b ) ) |
126 |
122 123 125
|
3orbi123d |
|- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) <-> ( b R c \/ b = c \/ c R b ) ) ) |
127 |
121 126
|
syl5ibcom |
|- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
128 |
127
|
rexlimdvva |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( E. d e. _om E. e e. _om ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
129 |
6 128
|
syl5bir |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
130 |
5 129
|
sylbid |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( b e. ran F /\ c e. ran F ) -> ( b R c \/ b = c \/ c R b ) ) ) |
131 |
130
|
ralrimivv |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> A. b e. ran F A. c e. ran F ( b R c \/ b = c \/ c R b ) ) |
132 |
|
df-so |
|- ( R Or ran F <-> ( R Po ran F /\ A. b e. ran F A. c e. ran F ( b R c \/ b = c \/ c R b ) ) ) |
133 |
1 131 132
|
sylanbrc |
|- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> R Or ran F ) |