| Step | Hyp | Ref | Expression | 
						
							| 1 |  | solin |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B [C.] C \/ B = C \/ C [C.] B ) ) | 
						
							| 2 |  | elex |  |-  ( C e. A -> C e. _V ) | 
						
							| 3 | 2 | ad2antll |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> C e. _V ) | 
						
							| 4 |  | brrpssg |  |-  ( C e. _V -> ( B [C.] C <-> B C. C ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B [C.] C <-> B C. C ) ) | 
						
							| 6 |  | biidd |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> B = C ) ) | 
						
							| 7 |  | elex |  |-  ( B e. A -> B e. _V ) | 
						
							| 8 | 7 | ad2antrl |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> B e. _V ) | 
						
							| 9 |  | brrpssg |  |-  ( B e. _V -> ( C [C.] B <-> C C. B ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( C [C.] B <-> C C. B ) ) | 
						
							| 11 | 5 6 10 | 3orbi123d |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B [C.] C \/ B = C \/ C [C.] B ) <-> ( B C. C \/ B = C \/ C C. B ) ) ) | 
						
							| 12 | 1 11 | mpbid |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C. C \/ B = C \/ C C. B ) ) | 
						
							| 13 |  | sspsstri |  |-  ( ( B C_ C \/ C C_ B ) <-> ( B C. C \/ B = C \/ C C. B ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) ) |