| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> B e. A ) | 
						
							| 2 |  | dfss2 |  |-  ( B C_ C <-> ( B i^i C ) = B ) | 
						
							| 3 |  | eleq1 |  |-  ( ( B i^i C ) = B -> ( ( B i^i C ) e. A <-> B e. A ) ) | 
						
							| 4 | 2 3 | sylbi |  |-  ( B C_ C -> ( ( B i^i C ) e. A <-> B e. A ) ) | 
						
							| 5 | 1 4 | syl5ibrcom |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C -> ( B i^i C ) e. A ) ) | 
						
							| 6 |  | simprr |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> C e. A ) | 
						
							| 7 |  | sseqin2 |  |-  ( C C_ B <-> ( B i^i C ) = C ) | 
						
							| 8 |  | eleq1 |  |-  ( ( B i^i C ) = C -> ( ( B i^i C ) e. A <-> C e. A ) ) | 
						
							| 9 | 7 8 | sylbi |  |-  ( C C_ B -> ( ( B i^i C ) e. A <-> C e. A ) ) | 
						
							| 10 | 6 9 | syl5ibrcom |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( C C_ B -> ( B i^i C ) e. A ) ) | 
						
							| 11 |  | sorpssi |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) ) | 
						
							| 12 | 5 10 11 | mpjaod |  |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B i^i C ) e. A ) |