Metamath Proof Explorer


Theorem sossfld

Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sossfld
|- ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) )
2 sotrieq
 |-  ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( x = B <-> -. ( x R B \/ B R x ) ) )
3 2 necon2abid
 |-  ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( ( x R B \/ B R x ) <-> x =/= B ) )
4 3 anass1rs
 |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) <-> x =/= B ) )
5 breldmg
 |-  ( ( x e. A /\ B e. A /\ x R B ) -> x e. dom R )
6 5 3expia
 |-  ( ( x e. A /\ B e. A ) -> ( x R B -> x e. dom R ) )
7 6 ancoms
 |-  ( ( B e. A /\ x e. A ) -> ( x R B -> x e. dom R ) )
8 brelrng
 |-  ( ( B e. A /\ x e. A /\ B R x ) -> x e. ran R )
9 8 3expia
 |-  ( ( B e. A /\ x e. A ) -> ( B R x -> x e. ran R ) )
10 7 9 orim12d
 |-  ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> ( x e. dom R \/ x e. ran R ) ) )
11 elun
 |-  ( x e. ( dom R u. ran R ) <-> ( x e. dom R \/ x e. ran R ) )
12 10 11 syl6ibr
 |-  ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) )
13 12 adantll
 |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) )
14 4 13 sylbird
 |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( x =/= B -> x e. ( dom R u. ran R ) ) )
15 14 expimpd
 |-  ( ( R Or A /\ B e. A ) -> ( ( x e. A /\ x =/= B ) -> x e. ( dom R u. ran R ) ) )
16 1 15 syl5bi
 |-  ( ( R Or A /\ B e. A ) -> ( x e. ( A \ { B } ) -> x e. ( dom R u. ran R ) ) )
17 16 ssrdv
 |-  ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) )