| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn |  |-  ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) | 
						
							| 2 |  | sotrieq |  |-  ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( x = B <-> -. ( x R B \/ B R x ) ) ) | 
						
							| 3 | 2 | necon2abid |  |-  ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) | 
						
							| 4 | 3 | anass1rs |  |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) | 
						
							| 5 |  | breldmg |  |-  ( ( x e. A /\ B e. A /\ x R B ) -> x e. dom R ) | 
						
							| 6 | 5 | 3expia |  |-  ( ( x e. A /\ B e. A ) -> ( x R B -> x e. dom R ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( B e. A /\ x e. A ) -> ( x R B -> x e. dom R ) ) | 
						
							| 8 |  | brelrng |  |-  ( ( B e. A /\ x e. A /\ B R x ) -> x e. ran R ) | 
						
							| 9 | 8 | 3expia |  |-  ( ( B e. A /\ x e. A ) -> ( B R x -> x e. ran R ) ) | 
						
							| 10 | 7 9 | orim12d |  |-  ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> ( x e. dom R \/ x e. ran R ) ) ) | 
						
							| 11 |  | elun |  |-  ( x e. ( dom R u. ran R ) <-> ( x e. dom R \/ x e. ran R ) ) | 
						
							| 12 | 10 11 | imbitrrdi |  |-  ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) | 
						
							| 13 | 12 | adantll |  |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) | 
						
							| 14 | 4 13 | sylbird |  |-  ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( x =/= B -> x e. ( dom R u. ran R ) ) ) | 
						
							| 15 | 14 | expimpd |  |-  ( ( R Or A /\ B e. A ) -> ( ( x e. A /\ x =/= B ) -> x e. ( dom R u. ran R ) ) ) | 
						
							| 16 | 1 15 | biimtrid |  |-  ( ( R Or A /\ B e. A ) -> ( x e. ( A \ { B } ) -> x e. ( dom R u. ran R ) ) ) | 
						
							| 17 | 16 | ssrdv |  |-  ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) ) |