Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
2 |
|
sotrieq |
|- ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( x = B <-> -. ( x R B \/ B R x ) ) ) |
3 |
2
|
necon2abid |
|- ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) |
4 |
3
|
anass1rs |
|- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) |
5 |
|
breldmg |
|- ( ( x e. A /\ B e. A /\ x R B ) -> x e. dom R ) |
6 |
5
|
3expia |
|- ( ( x e. A /\ B e. A ) -> ( x R B -> x e. dom R ) ) |
7 |
6
|
ancoms |
|- ( ( B e. A /\ x e. A ) -> ( x R B -> x e. dom R ) ) |
8 |
|
brelrng |
|- ( ( B e. A /\ x e. A /\ B R x ) -> x e. ran R ) |
9 |
8
|
3expia |
|- ( ( B e. A /\ x e. A ) -> ( B R x -> x e. ran R ) ) |
10 |
7 9
|
orim12d |
|- ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> ( x e. dom R \/ x e. ran R ) ) ) |
11 |
|
elun |
|- ( x e. ( dom R u. ran R ) <-> ( x e. dom R \/ x e. ran R ) ) |
12 |
10 11
|
syl6ibr |
|- ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) |
13 |
12
|
adantll |
|- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) |
14 |
4 13
|
sylbird |
|- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( x =/= B -> x e. ( dom R u. ran R ) ) ) |
15 |
14
|
expimpd |
|- ( ( R Or A /\ B e. A ) -> ( ( x e. A /\ x =/= B ) -> x e. ( dom R u. ran R ) ) ) |
16 |
1 15
|
syl5bi |
|- ( ( R Or A /\ B e. A ) -> ( x e. ( A \ { B } ) -> x e. ( dom R u. ran R ) ) ) |
17 |
16
|
ssrdv |
|- ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) ) |