Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotr | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo | |- ( R Or A -> R Po A ) |
|
| 2 | potr | |- ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |
|
| 3 | 1 2 | sylan | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |