Step |
Hyp |
Ref |
Expression |
1 |
|
sotric |
|- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
2 |
1
|
ancom2s |
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
3 |
2
|
3adantr3 |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
4 |
3
|
con2bid |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) <-> -. C R B ) ) |
5 |
|
breq1 |
|- ( C = B -> ( C R D <-> B R D ) ) |
6 |
5
|
biimpd |
|- ( C = B -> ( C R D -> B R D ) ) |
7 |
6
|
a1i |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C = B -> ( C R D -> B R D ) ) ) |
8 |
|
sotr |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |
9 |
8
|
expd |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( B R C -> ( C R D -> B R D ) ) ) |
10 |
7 9
|
jaod |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) -> ( C R D -> B R D ) ) ) |
11 |
4 10
|
sylbird |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( -. C R B -> ( C R D -> B R D ) ) ) |
12 |
11
|
impd |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( -. C R B /\ C R D ) -> B R D ) ) |