| Step | Hyp | Ref | Expression | 
						
							| 1 |  | soi.1 |  |-  R Or S | 
						
							| 2 |  | soi.2 |  |-  R C_ ( S X. S ) | 
						
							| 3 | 2 | brel |  |-  ( B R C -> ( B e. S /\ C e. S ) ) | 
						
							| 4 | 3 | simpld |  |-  ( B R C -> B e. S ) | 
						
							| 5 |  | sotric |  |-  ( ( R Or S /\ ( B e. S /\ A e. S ) ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) | 
						
							| 6 | 1 5 | mpan |  |-  ( ( B e. S /\ A e. S ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) | 
						
							| 7 | 6 | con2bid |  |-  ( ( B e. S /\ A e. S ) -> ( ( B = A \/ A R B ) <-> -. B R A ) ) | 
						
							| 8 |  | breq1 |  |-  ( B = A -> ( B R C <-> A R C ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( B = A -> ( B R C -> A R C ) ) | 
						
							| 10 | 1 2 | sotri |  |-  ( ( A R B /\ B R C ) -> A R C ) | 
						
							| 11 | 10 | ex |  |-  ( A R B -> ( B R C -> A R C ) ) | 
						
							| 12 | 9 11 | jaoi |  |-  ( ( B = A \/ A R B ) -> ( B R C -> A R C ) ) | 
						
							| 13 | 7 12 | biimtrrdi |  |-  ( ( B e. S /\ A e. S ) -> ( -. B R A -> ( B R C -> A R C ) ) ) | 
						
							| 14 | 13 | com3r |  |-  ( B R C -> ( ( B e. S /\ A e. S ) -> ( -. B R A -> A R C ) ) ) | 
						
							| 15 | 4 14 | mpand |  |-  ( B R C -> ( A e. S -> ( -. B R A -> A R C ) ) ) | 
						
							| 16 | 15 | 3imp231 |  |-  ( ( A e. S /\ -. B R A /\ B R C ) -> A R C ) |