Step |
Hyp |
Ref |
Expression |
1 |
|
soi.1 |
|- R Or S |
2 |
|
soi.2 |
|- R C_ ( S X. S ) |
3 |
2
|
brel |
|- ( B R C -> ( B e. S /\ C e. S ) ) |
4 |
3
|
simpld |
|- ( B R C -> B e. S ) |
5 |
|
sotric |
|- ( ( R Or S /\ ( B e. S /\ A e. S ) ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) |
6 |
1 5
|
mpan |
|- ( ( B e. S /\ A e. S ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) |
7 |
6
|
con2bid |
|- ( ( B e. S /\ A e. S ) -> ( ( B = A \/ A R B ) <-> -. B R A ) ) |
8 |
|
breq1 |
|- ( B = A -> ( B R C <-> A R C ) ) |
9 |
8
|
biimpd |
|- ( B = A -> ( B R C -> A R C ) ) |
10 |
1 2
|
sotri |
|- ( ( A R B /\ B R C ) -> A R C ) |
11 |
10
|
ex |
|- ( A R B -> ( B R C -> A R C ) ) |
12 |
9 11
|
jaoi |
|- ( ( B = A \/ A R B ) -> ( B R C -> A R C ) ) |
13 |
7 12
|
syl6bir |
|- ( ( B e. S /\ A e. S ) -> ( -. B R A -> ( B R C -> A R C ) ) ) |
14 |
13
|
com3r |
|- ( B R C -> ( ( B e. S /\ A e. S ) -> ( -. B R A -> A R C ) ) ) |
15 |
4 14
|
mpand |
|- ( B R C -> ( A e. S -> ( -. B R A -> A R C ) ) ) |
16 |
15
|
3imp231 |
|- ( ( A e. S /\ -. B R A /\ B R C ) -> A R C ) |