Step |
Hyp |
Ref |
Expression |
1 |
|
soi.1 |
|- R Or S |
2 |
|
soi.2 |
|- R C_ ( S X. S ) |
3 |
2
|
brel |
|- ( A R B -> ( A e. S /\ B e. S ) ) |
4 |
3
|
simprd |
|- ( A R B -> B e. S ) |
5 |
|
sotric |
|- ( ( R Or S /\ ( C e. S /\ B e. S ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
6 |
1 5
|
mpan |
|- ( ( C e. S /\ B e. S ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
7 |
6
|
con2bid |
|- ( ( C e. S /\ B e. S ) -> ( ( C = B \/ B R C ) <-> -. C R B ) ) |
8 |
|
breq2 |
|- ( C = B -> ( A R C <-> A R B ) ) |
9 |
8
|
biimprd |
|- ( C = B -> ( A R B -> A R C ) ) |
10 |
1 2
|
sotri |
|- ( ( A R B /\ B R C ) -> A R C ) |
11 |
10
|
expcom |
|- ( B R C -> ( A R B -> A R C ) ) |
12 |
9 11
|
jaoi |
|- ( ( C = B \/ B R C ) -> ( A R B -> A R C ) ) |
13 |
7 12
|
syl6bir |
|- ( ( C e. S /\ B e. S ) -> ( -. C R B -> ( A R B -> A R C ) ) ) |
14 |
13
|
com3r |
|- ( A R B -> ( ( C e. S /\ B e. S ) -> ( -. C R B -> A R C ) ) ) |
15 |
4 14
|
mpan2d |
|- ( A R B -> ( C e. S -> ( -. C R B -> A R C ) ) ) |
16 |
15
|
3imp21 |
|- ( ( C e. S /\ A R B /\ -. C R B ) -> A R C ) |