Metamath Proof Explorer


Theorem sotrieq2

Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999)

Ref Expression
Assertion sotrieq2
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> ( -. B R C /\ -. C R B ) ) )

Proof

Step Hyp Ref Expression
1 sotrieq
 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> -. ( B R C \/ C R B ) ) )
2 ioran
 |-  ( -. ( B R C \/ C R B ) <-> ( -. B R C /\ -. C R B ) )
3 1 2 bitrdi
 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> ( -. B R C /\ -. C R B ) ) )