| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spanval | 
							 |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) | 
						
						
							| 2 | 
							
								
							 | 
							ssrab2 | 
							 |-  { x e. SH | A C_ x } C_ SH | 
						
						
							| 3 | 
							
								
							 | 
							helsh | 
							 |-  ~H e. SH  | 
						
						
							| 4 | 
							
								
							 | 
							sseq2 | 
							 |-  ( x = ~H -> ( A C_ x <-> A C_ ~H ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rspcev | 
							 |-  ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpan | 
							 |-  ( A C_ ~H -> E. x e. SH A C_ x )  | 
						
						
							| 7 | 
							
								
							 | 
							rabn0 | 
							 |-  ( { x e. SH | A C_ x } =/= (/) <-> E. x e. SH A C_ x ) | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( A C_ ~H -> { x e. SH | A C_ x } =/= (/) ) | 
						
						
							| 9 | 
							
								
							 | 
							shintcl | 
							 |-  ( ( { x e. SH | A C_ x } C_ SH /\ { x e. SH | A C_ x } =/= (/) ) -> |^| { x e. SH | A C_ x } e. SH ) | 
						
						
							| 10 | 
							
								2 8 9
							 | 
							sylancr | 
							 |-  ( A C_ ~H -> |^| { x e. SH | A C_ x } e. SH ) | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqeltrd | 
							 |-  ( A C_ ~H -> ( span ` A ) e. SH )  |