Step |
Hyp |
Ref |
Expression |
1 |
|
spanval |
|- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
2 |
|
ssrab2 |
|- { x e. SH | A C_ x } C_ SH |
3 |
|
helsh |
|- ~H e. SH |
4 |
|
sseq2 |
|- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
5 |
4
|
rspcev |
|- ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) |
6 |
3 5
|
mpan |
|- ( A C_ ~H -> E. x e. SH A C_ x ) |
7 |
|
rabn0 |
|- ( { x e. SH | A C_ x } =/= (/) <-> E. x e. SH A C_ x ) |
8 |
6 7
|
sylibr |
|- ( A C_ ~H -> { x e. SH | A C_ x } =/= (/) ) |
9 |
|
shintcl |
|- ( ( { x e. SH | A C_ x } C_ SH /\ { x e. SH | A C_ x } =/= (/) ) -> |^| { x e. SH | A C_ x } e. SH ) |
10 |
2 8 9
|
sylancr |
|- ( A C_ ~H -> |^| { x e. SH | A C_ x } e. SH ) |
11 |
1 10
|
eqeltrd |
|- ( A C_ ~H -> ( span ` A ) e. SH ) |