Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spanid | |- ( A e. SH -> ( span ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss | |- ( A e. SH -> A C_ ~H ) |
|
2 | spanval | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
|
3 | 1 2 | syl | |- ( A e. SH -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
4 | intmin | |- ( A e. SH -> |^| { x e. SH | A C_ x } = A ) |
|
5 | 3 4 | eqtrd | |- ( A e. SH -> ( span ` A ) = A ) |