Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanid | |- ( A e. SH -> ( span ` A ) = A )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shss | |- ( A e. SH -> A C_ ~H )  | 
						|
| 2 | spanval |  |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) | 
						|
| 3 | 1 2 | syl |  |-  ( A e. SH -> ( span ` A ) = |^| { x e. SH | A C_ x } ) | 
						
| 4 | intmin |  |-  ( A e. SH -> |^| { x e. SH | A C_ x } = A ) | 
						|
| 5 | 3 4 | eqtrd | |- ( A e. SH -> ( span ` A ) = A )  |