Metamath Proof Explorer


Theorem spanid

Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spanid
|- ( A e. SH -> ( span ` A ) = A )

Proof

Step Hyp Ref Expression
1 shss
 |-  ( A e. SH -> A C_ ~H )
2 spanval
 |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } )
3 1 2 syl
 |-  ( A e. SH -> ( span ` A ) = |^| { x e. SH | A C_ x } )
4 intmin
 |-  ( A e. SH -> |^| { x e. SH | A C_ x } = A )
5 3 4 eqtrd
 |-  ( A e. SH -> ( span ` A ) = A )