| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
|- ( A = if ( A e. ~H , A , 0h ) -> { A } = { if ( A e. ~H , A , 0h ) } ) |
| 2 |
1
|
fveq2d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( span ` { A } ) = ( span ` { if ( A e. ~H , A , 0h ) } ) ) |
| 3 |
1
|
fveq2d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( _|_ ` { A } ) = ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) |
| 4 |
3
|
fveq2d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) <-> ( span ` { if ( A e. ~H , A , 0h ) } ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) ) ) |
| 6 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 7 |
6
|
spansni |
|- ( span ` { if ( A e. ~H , A , 0h ) } ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) |
| 8 |
5 7
|
dedth |
|- ( A e. ~H -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) ) |