Metamath Proof Explorer


Theorem spansna

Description: The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansna
|- ( ( A e. ~H /\ A =/= 0h ) -> ( span ` { A } ) e. HAtoms )

Proof

Step Hyp Ref Expression
1 spansn
 |-  ( A e. ~H -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) )
2 1 adantr
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) )
3 h1da
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) e. HAtoms )
4 2 3 eqeltrd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( span ` { A } ) e. HAtoms )