Metamath Proof Explorer


Theorem spansnch

Description: The span of a Hilbert space singleton belongs to the Hilbert lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnch
|- ( A e. ~H -> ( span ` { A } ) e. CH )

Proof

Step Hyp Ref Expression
1 spansn
 |-  ( A e. ~H -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) )
2 snssi
 |-  ( A e. ~H -> { A } C_ ~H )
3 occl
 |-  ( { A } C_ ~H -> ( _|_ ` { A } ) e. CH )
4 choccl
 |-  ( ( _|_ ` { A } ) e. CH -> ( _|_ ` ( _|_ ` { A } ) ) e. CH )
5 2 3 4 3syl
 |-  ( A e. ~H -> ( _|_ ` ( _|_ ` { A } ) ) e. CH )
6 1 5 eqeltrd
 |-  ( A e. ~H -> ( span ` { A } ) e. CH )