| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elspansn |  |-  ( B e. ~H -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) | 
						
							| 3 |  | sneq |  |-  ( A = ( x .h B ) -> { A } = { ( x .h B ) } ) | 
						
							| 4 | 3 | fveq2d |  |-  ( A = ( x .h B ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) | 
						
							| 5 | 4 | ad2antll |  |-  ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) | 
						
							| 6 |  | oveq1 |  |-  ( x = 0 -> ( x .h B ) = ( 0 .h B ) ) | 
						
							| 7 |  | ax-hvmul0 |  |-  ( B e. ~H -> ( 0 .h B ) = 0h ) | 
						
							| 8 | 6 7 | sylan9eqr |  |-  ( ( B e. ~H /\ x = 0 ) -> ( x .h B ) = 0h ) | 
						
							| 9 | 8 | ex |  |-  ( B e. ~H -> ( x = 0 -> ( x .h B ) = 0h ) ) | 
						
							| 10 |  | eqeq1 |  |-  ( A = ( x .h B ) -> ( A = 0h <-> ( x .h B ) = 0h ) ) | 
						
							| 11 | 10 | biimprd |  |-  ( A = ( x .h B ) -> ( ( x .h B ) = 0h -> A = 0h ) ) | 
						
							| 12 | 9 11 | sylan9 |  |-  ( ( B e. ~H /\ A = ( x .h B ) ) -> ( x = 0 -> A = 0h ) ) | 
						
							| 13 | 12 | necon3d |  |-  ( ( B e. ~H /\ A = ( x .h B ) ) -> ( A =/= 0h -> x =/= 0 ) ) | 
						
							| 14 | 13 | ex |  |-  ( B e. ~H -> ( A = ( x .h B ) -> ( A =/= 0h -> x =/= 0 ) ) ) | 
						
							| 15 | 14 | com23 |  |-  ( B e. ~H -> ( A =/= 0h -> ( A = ( x .h B ) -> x =/= 0 ) ) ) | 
						
							| 16 | 15 | impd |  |-  ( B e. ~H -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) | 
						
							| 18 |  | spansncol |  |-  ( ( B e. ~H /\ x e. CC /\ x =/= 0 ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) | 
						
							| 19 | 18 | 3expia |  |-  ( ( B e. ~H /\ x e. CC ) -> ( x =/= 0 -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) | 
						
							| 20 | 17 19 | syld |  |-  ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) | 
						
							| 21 | 20 | exp4b |  |-  ( B e. ~H -> ( x e. CC -> ( A =/= 0h -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) | 
						
							| 22 | 21 | com23 |  |-  ( B e. ~H -> ( A =/= 0h -> ( x e. CC -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) | 
						
							| 23 | 22 | imp43 |  |-  ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) | 
						
							| 24 | 5 23 | eqtrd |  |-  ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { B } ) ) | 
						
							| 25 | 24 | rexlimdvaa |  |-  ( ( B e. ~H /\ A =/= 0h ) -> ( E. x e. CC A = ( x .h B ) -> ( span ` { A } ) = ( span ` { B } ) ) ) | 
						
							| 26 | 2 25 | sylbid |  |-  ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |