Step |
Hyp |
Ref |
Expression |
1 |
|
elspansn |
|- ( B e. ~H -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
2 |
1
|
adantr |
|- ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
3 |
|
sneq |
|- ( A = ( x .h B ) -> { A } = { ( x .h B ) } ) |
4 |
3
|
fveq2d |
|- ( A = ( x .h B ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) |
5 |
4
|
ad2antll |
|- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) |
6 |
|
oveq1 |
|- ( x = 0 -> ( x .h B ) = ( 0 .h B ) ) |
7 |
|
ax-hvmul0 |
|- ( B e. ~H -> ( 0 .h B ) = 0h ) |
8 |
6 7
|
sylan9eqr |
|- ( ( B e. ~H /\ x = 0 ) -> ( x .h B ) = 0h ) |
9 |
8
|
ex |
|- ( B e. ~H -> ( x = 0 -> ( x .h B ) = 0h ) ) |
10 |
|
eqeq1 |
|- ( A = ( x .h B ) -> ( A = 0h <-> ( x .h B ) = 0h ) ) |
11 |
10
|
biimprd |
|- ( A = ( x .h B ) -> ( ( x .h B ) = 0h -> A = 0h ) ) |
12 |
9 11
|
sylan9 |
|- ( ( B e. ~H /\ A = ( x .h B ) ) -> ( x = 0 -> A = 0h ) ) |
13 |
12
|
necon3d |
|- ( ( B e. ~H /\ A = ( x .h B ) ) -> ( A =/= 0h -> x =/= 0 ) ) |
14 |
13
|
ex |
|- ( B e. ~H -> ( A = ( x .h B ) -> ( A =/= 0h -> x =/= 0 ) ) ) |
15 |
14
|
com23 |
|- ( B e. ~H -> ( A =/= 0h -> ( A = ( x .h B ) -> x =/= 0 ) ) ) |
16 |
15
|
impd |
|- ( B e. ~H -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) |
17 |
16
|
adantr |
|- ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) |
18 |
|
spansncol |
|- ( ( B e. ~H /\ x e. CC /\ x =/= 0 ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) |
19 |
18
|
3expia |
|- ( ( B e. ~H /\ x e. CC ) -> ( x =/= 0 -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) |
20 |
17 19
|
syld |
|- ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) |
21 |
20
|
exp4b |
|- ( B e. ~H -> ( x e. CC -> ( A =/= 0h -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) |
22 |
21
|
com23 |
|- ( B e. ~H -> ( A =/= 0h -> ( x e. CC -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) |
23 |
22
|
imp43 |
|- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) |
24 |
5 23
|
eqtrd |
|- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { B } ) ) |
25 |
24
|
rexlimdvaa |
|- ( ( B e. ~H /\ A =/= 0h ) -> ( E. x e. CC A = ( x .h B ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |
26 |
2 25
|
sylbid |
|- ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |