Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansneleqi | |- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansnid |  |-  ( A e. ~H -> A e. ( span ` { A } ) ) | |
| 2 | eleq2 |  |-  ( ( span ` { A } ) = ( span ` { B } ) -> ( A e. ( span ` { A } ) <-> A e. ( span ` { B } ) ) ) | |
| 3 | 1 2 | syl5ibcom |  |-  ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) |