Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansneleqi | |- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
2 | eleq2 | |- ( ( span ` { A } ) = ( span ` { B } ) -> ( A e. ( span ` { A } ) <-> A e. ( span ` { B } ) ) ) |
|
3 | 1 2 | syl5ibcom | |- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) |