Metamath Proof Explorer


Theorem spansneleqi

Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansneleqi
|- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) )

Proof

Step Hyp Ref Expression
1 spansnid
 |-  ( A e. ~H -> A e. ( span ` { A } ) )
2 eleq2
 |-  ( ( span ` { A } ) = ( span ` { B } ) -> ( A e. ( span ` { A } ) <-> A e. ( span ` { B } ) ) )
3 1 2 syl5ibcom
 |-  ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) )