| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spansnj.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							spansnj.2 | 
							 |-  B e. ~H  | 
						
						
							| 3 | 
							
								1
							 | 
							chshii | 
							 |-  A e. SH  | 
						
						
							| 4 | 
							
								2
							 | 
							spansnchi | 
							 |-  ( span ` { B } ) e. CH | 
						
						
							| 5 | 
							
								4
							 | 
							chshii | 
							 |-  ( span ` { B } ) e. SH | 
						
						
							| 6 | 
							
								3 5
							 | 
							shjshsi | 
							 |-  ( A vH ( span ` { B } ) ) = ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) | 
						
						
							| 7 | 
							
								1
							 | 
							chssii | 
							 |-  A C_ ~H  | 
						
						
							| 8 | 
							
								1
							 | 
							choccli | 
							 |-  ( _|_ ` A ) e. CH  | 
						
						
							| 9 | 
							
								8 2
							 | 
							pjhclii | 
							 |-  ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H  | 
						
						
							| 10 | 
							
								
							 | 
							snssi | 
							 |-  ( ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H -> { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H ) | 
						
						
							| 11 | 
							
								9 10
							 | 
							ax-mp | 
							 |-  { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H | 
						
						
							| 12 | 
							
								7 11
							 | 
							spanuni | 
							 |-  ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 13 | 
							
								
							 | 
							spanid | 
							 |-  ( A e. SH -> ( span ` A ) = A )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							ax-mp | 
							 |-  ( span ` A ) = A  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1i | 
							 |-  ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 16 | 
							
								7 2
							 | 
							spansnpji | 
							 |-  A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 17 | 
							
								9
							 | 
							spansnchi | 
							 |-  ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) e. CH | 
						
						
							| 18 | 
							
								1 17
							 | 
							osumi | 
							 |-  ( A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) -> ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) ) | 
						
						
							| 19 | 
							
								16 18
							 | 
							ax-mp | 
							 |-  ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 20 | 
							
								12 15 19
							 | 
							3eqtrri | 
							 |-  ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 21 | 
							
								1 2
							 | 
							spanunsni | 
							 |-  ( span ` ( A u. { B } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqtr4i | 
							 |-  ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { B } ) ) | 
						
						
							| 23 | 
							
								
							 | 
							snssi | 
							 |-  ( B e. ~H -> { B } C_ ~H ) | 
						
						
							| 24 | 
							
								2 23
							 | 
							ax-mp | 
							 |-  { B } C_ ~H | 
						
						
							| 25 | 
							
								7 24
							 | 
							spanuni | 
							 |-  ( span ` ( A u. { B } ) ) = ( ( span ` A ) +H ( span ` { B } ) ) | 
						
						
							| 26 | 
							
								14
							 | 
							oveq1i | 
							 |-  ( ( span ` A ) +H ( span ` { B } ) ) = ( A +H ( span ` { B } ) ) | 
						
						
							| 27 | 
							
								22 25 26
							 | 
							3eqtrri | 
							 |-  ( A +H ( span ` { B } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 28 | 
							
								1 17
							 | 
							chjcli | 
							 |-  ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) e. CH | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqeltri | 
							 |-  ( A +H ( span ` { B } ) ) e. CH | 
						
						
							| 30 | 
							
								29
							 | 
							ococi | 
							 |-  ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) = ( A +H ( span ` { B } ) ) | 
						
						
							| 31 | 
							
								6 30
							 | 
							eqtr2i | 
							 |-  ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) |