Step |
Hyp |
Ref |
Expression |
1 |
|
spansnm0.1 |
|- A e. ~H |
2 |
|
spansnm0.2 |
|- B e. ~H |
3 |
2
|
spansnchi |
|- ( span ` { B } ) e. CH |
4 |
3
|
chshii |
|- ( span ` { B } ) e. SH |
5 |
|
elspansn5 |
|- ( ( span ` { B } ) e. SH -> ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) ) |
6 |
4 5
|
ax-mp |
|- ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) |
7 |
1 6
|
mpanl1 |
|- ( ( -. A e. ( span ` { B } ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) |
8 |
7
|
ex |
|- ( -. A e. ( span ` { B } ) -> ( ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) -> x = 0h ) ) |
9 |
|
elin |
|- ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) <-> ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) |
10 |
|
elch0 |
|- ( x e. 0H <-> x = 0h ) |
11 |
8 9 10
|
3imtr4g |
|- ( -. A e. ( span ` { B } ) -> ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) -> x e. 0H ) ) |
12 |
11
|
ssrdv |
|- ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H ) |
13 |
1
|
spansnchi |
|- ( span ` { A } ) e. CH |
14 |
13 3
|
chincli |
|- ( ( span ` { A } ) i^i ( span ` { B } ) ) e. CH |
15 |
14
|
chle0i |
|- ( ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H <-> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |
16 |
12 15
|
sylib |
|- ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |