| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spansnpj.1 | 
							 |-  A C_ ~H  | 
						
						
							| 2 | 
							
								
							 | 
							spansnpj.2 | 
							 |-  B e. ~H  | 
						
						
							| 3 | 
							
								
							 | 
							ococss | 
							 |-  ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ax-mp | 
							 |-  A C_ ( _|_ ` ( _|_ ` A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							occl | 
							 |-  ( A C_ ~H -> ( _|_ ` A ) e. CH )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ax-mp | 
							 |-  ( _|_ ` A ) e. CH  | 
						
						
							| 7 | 
							
								6
							 | 
							chssii | 
							 |-  ( _|_ ` A ) C_ ~H  | 
						
						
							| 8 | 
							
								6 2
							 | 
							pjclii | 
							 |-  ( ( projh ` ( _|_ ` A ) ) ` B ) e. ( _|_ ` A )  | 
						
						
							| 9 | 
							
								
							 | 
							snssi | 
							 |-  ( ( ( projh ` ( _|_ ` A ) ) ` B ) e. ( _|_ ` A ) -> { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) ) | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) | 
						
						
							| 11 | 
							
								
							 | 
							spanss | 
							 |-  ( ( ( _|_ ` A ) C_ ~H /\ { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) ) -> ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( span ` ( _|_ ` A ) ) ) | 
						
						
							| 12 | 
							
								7 10 11
							 | 
							mp2an | 
							 |-  ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( span ` ( _|_ ` A ) ) | 
						
						
							| 13 | 
							
								6
							 | 
							chshii | 
							 |-  ( _|_ ` A ) e. SH  | 
						
						
							| 14 | 
							
								
							 | 
							spanid | 
							 |-  ( ( _|_ ` A ) e. SH -> ( span ` ( _|_ ` A ) ) = ( _|_ ` A ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ax-mp | 
							 |-  ( span ` ( _|_ ` A ) ) = ( _|_ ` A )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							sseqtri | 
							 |-  ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( _|_ ` A ) | 
						
						
							| 17 | 
							
								6 2
							 | 
							pjhclii | 
							 |-  ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H  | 
						
						
							| 18 | 
							
								17
							 | 
							spansnchi | 
							 |-  ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) e. CH | 
						
						
							| 19 | 
							
								18 6
							 | 
							chsscon3i | 
							 |-  ( ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( _|_ ` A ) <-> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) ) | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbi | 
							 |-  ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) | 
						
						
							| 21 | 
							
								4 20
							 | 
							sstri | 
							 |-  A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |