Description: The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansnscl | |- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) e. CH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnj | |- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) ) |
|
2 | spansnch | |- ( B e. ~H -> ( span ` { B } ) e. CH ) |
|
3 | chjcl | |- ( ( A e. CH /\ ( span ` { B } ) e. CH ) -> ( A vH ( span ` { B } ) ) e. CH ) |
|
4 | 2 3 | sylan2 | |- ( ( A e. CH /\ B e. ~H ) -> ( A vH ( span ` { B } ) ) e. CH ) |
5 | 1 4 | eqeltrd | |- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) e. CH ) |