Metamath Proof Explorer


Theorem spansnscl

Description: The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnscl
|- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) e. CH )

Proof

Step Hyp Ref Expression
1 spansnj
 |-  ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) )
2 spansnch
 |-  ( B e. ~H -> ( span ` { B } ) e. CH )
3 chjcl
 |-  ( ( A e. CH /\ ( span ` { B } ) e. CH ) -> ( A vH ( span ` { B } ) ) e. CH )
4 2 3 sylan2
 |-  ( ( A e. CH /\ B e. ~H ) -> ( A vH ( span ` { B } ) ) e. CH )
5 1 4 eqeltrd
 |-  ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) e. CH )